Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Microbiol ; 77(12): 4063-4071, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33044618

RESUMO

The objective of this study was to assess the role of UbK, a novel protein kinase, in the growth of Bacillus subtilis, especially under oxidative stress conditions. Growth profiles of wild-type and ΔubK mutant strains were assessed in the presence of paraquat, an in vivo inducer of oxidative stress. Wild-type B. subtilis cells were able to efficiently survive the stress conditions, whereas the growth profile of the ΔubK mutant strain was significantly affected. Complementation of the ΔubK mutant with a plasmid coding for a wild-type UbK restored wild-type growth phenotypes. Furthermore, we used recombinant plasmids containing the genes of the active kinase (UbK) and its inactive form (E106AUbK) to transform wild-type and ΔubK mutant strains. Our results showed that an active form of UbK is needed to restore a normal growth profile. Protein kinases allow a fine-tuning of cellular processes, including those related to metabolic adaptation to environmental cues. Our findings highlight the importance of an active UbK in the bacterial growth under oxidative stress in B. subtilis. This study revealed the role of a new protein kinase, UbK, allowing B. subtilis to survive oxidative stress.


Assuntos
Bacillus subtilis , Proteínas de Bactérias , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Estresse Oxidativo , Plasmídeos , Proteínas Quinases/genética
2.
Sci Rep ; 9(1): 2654, 2019 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-30804404

RESUMO

Overexpression of correctly folded membrane proteins is a fundamental prerequisite for functional and structural studies. One of the most commonly used expression systems for the production of membrane proteins is Escherichia coli. While misfolded proteins typically aggregate and form inclusions bodies, membrane proteins that are addressed to the membrane and extractable by detergents are generally assumed to be properly folded. Accordingly, GFP fusion strategy is often used as a fluorescent proxy to monitor their expression and folding quality. Here we investigated the functionality of two different multidrug ABC transporters, the homodimer BmrA from Bacillus subtilis and the heterodimer PatA/PatB from Streptococcus pneumoniae, when produced in several E. coli strains with T7 expression system. Strikingly, while strong expression in the membrane of several strains could be achieved, we observed drastic differences in the functionality of these proteins. Moreover, we observed a general trend in which mild detergents mainly extract the population of active transporters, whereas a harsher detergent like Fos-choline 12 could solubilize transporters irrespective of their functionality. Our results suggest that the amount of T7 RNA polymerase transcripts may indirectly but notably impact the structure and activity of overexpressed membrane proteins, and advise caution when using GFP fusion strategy.


Assuntos
Escherichia coli/genética , Expressão Gênica , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Recombinantes de Fusão , Transporte Biológico , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Genes Reporter , Proteínas de Membrana/isolamento & purificação , Especificidade da Espécie , Vesículas Transportadoras
3.
J Mol Biol ; 429(20): 3056-3074, 2017 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-28890133

RESUMO

Fine tuning of signaling pathways is essential for cells to cope with sudden environmental variations. This delicate balance is maintained in particular by protein kinases that control the activity of target proteins by reversible phosphorylation. In addition to homologous eukaryotic enzymes, bacteria have evolved some specific Ser/Thr/Tyr protein kinases without any structural resemblance to their eukaryotic counterparts. Here, we show that a previously identified family of ATPases, broadly conserved among bacteria, is in fact a new family of protein kinases with a Ser/Thr/Tyr kinase activity. A prototypic member of this family, YdiB from Bacillus subtilis, is able to autophosphorylate and to phosphorylate a surrogate substrate, the myelin basic protein. Two crystal structures of YdiB were solved (1.8 and 2.0Å) that display a unique ATP-binding fold unrelated to known protein kinases, although a conserved HxD motif is reminiscent of that found in Hanks-type protein kinases. The effect of mutations of conserved residues further highlights the unique nature of this new protein kinase family that we name ubiquitous bacterial kinase. We investigated the cellular role of YdiB and showed that a ∆ydiB mutant was more sensitive to paraquat treatment than the wild type, with ~13% of cells with an aberrant morphology. In addition, YdiE, which is known to participate with both YdiC and YdiB in an essential chemical modification of some specific tRNAs, is phosphorylated in vitro by YdiB. These results expand the boundaries of the bacterial kinome and support the involvement of YdiB in protein translation and resistance to oxidative stress in B. subtilis.


Assuntos
Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Proteínas Quinases/química , Proteínas Quinases/genética , Bacillus subtilis/citologia , Bacillus subtilis/efeitos dos fármacos , Cristalografia por Raios X , Deleção de Genes , Oxidantes/toxicidade , Estresse Oxidativo , Paraquat/toxicidade , Fosforilação , Processamento de Proteína Pós-Traducional
4.
Protein Expr Purif ; 113: 94-101, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26002116

RESUMO

Gal4/UAS system is a powerful tool for the analysis of numerous biological processes. Gal4 is a large yeast transcription factor that activates genes including UAS sequences in their promoter. Here, we have synthesized a minimal form of Gal4 DNA sequence coding for the binding and dimerization regions, but also part of the transcriptional activation domain. This truncated Gal4 protein was expressed as inclusion bodies in Escherichia coli. A structured and active form of this recombinant protein was purified and used to cover poly(lactic acid) (PLA) nanoparticles. In cellulo, these Gal4-vehicles were able to activate the expression of a Green Fluorescent Protein (GFP) gene under the control of UAS sequences, demonstrating that the decorated Gal4 variant can be delivery into cells where it still retains its transcription factor capacities. Thus, we have produced in E. coli and purified a short active form of Gal4 that retains its functions at the surface of PLA-nanoparticles in cellular assay. These decorated Gal4-nanoparticles will be useful to decipher their tissue distribution and their potential after ingestion or injection in UAS-GFP recombinant animal models.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Ácido Láctico/metabolismo , Nanopartículas/metabolismo , Polímeros/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/isolamento & purificação , Drosophila melanogaster/fisiologia , Corpos de Inclusão , Ácido Láctico/química , Nanopartículas/química , Poliésteres , Polímeros/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Propriedades de Superfície , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/isolamento & purificação
5.
FEBS Lett ; 587(21): 3412-6, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24076024

RESUMO

BtpA/Btp1/TcpB is a virulence factor produced by Brucella species that possesses a Toll interleukin-1 receptor (TIR) domain. Once delivered into the host cell, BtpA interacts with MyD88 to interfere with TLR signalling and modulates microtubule dynamics. Here the crystal structure of the BtpA TIR domain at 3.15 Å is presented. The structure shows a dimeric arrangement of a canonical TIR domain, similar to the Paracoccus denitrificans Tir protein but secured by a unique long N-terminal α-tail that packs against the TIR:TIR dimer. Structure-based mutations and multi-angle light scattering experiments characterized the BtpA dimer conformation in solution. The structure of BtpA will help with studies to understand the mechanisms involved in its interactions with MyD88 and with microtubules.


Assuntos
Proteínas de Bactérias/química , Brucella melitensis/imunologia , Brucella melitensis/metabolismo , Receptores de Interleucina-1/química , Proteínas de Bactérias/metabolismo , Humanos , Modelos Moleculares , Paracoccus denitrificans/metabolismo , Multimerização Proteica , Estrutura Terciária de Proteína , Receptores de Interleucina-1/metabolismo , Relação Estrutura-Atividade , Fatores de Virulência/química , Fatores de Virulência/metabolismo
6.
PLoS One ; 8(2): e56336, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23441177

RESUMO

GPCR desensitization and down-regulation are considered key molecular events underlying the development of tolerance in vivo. Among the many regulatory proteins that are involved in these complex processes, GASP-1 have been shown to participate to the sorting of several receptors toward the degradation pathway. This protein belongs to the recently identified GPCR-associated sorting proteins (GASPs) family that comprises ten members for which structural and functional details are poorly documented. We present here a detailed structure-function relationship analysis of the molecular interaction between GASPs and a panel of GPCRs. In a first step, GST-pull down experiments revealed that all the tested GASPs display significant interactions with a wide range of GPCRs. Importantly, the different GASP members exhibiting the strongest interaction properties were also characterized by the presence of a small, highly conserved and repeated "GASP motif" of 15 amino acids. We further showed using GST-pull down, surface plasmon resonance and co-immunoprecipitation experiments that the central domain of GASP-1, which contains 22 GASP motifs, is essential for the interaction with GPCRs. We then used site directed mutagenesis and competition experiments with synthetic peptides to demonstrate that the GASP motif, and particularly its highly conserved core sequence SWFW, is critically involved in the interaction with GPCRs. Overall, our data show that several members of the GASP family interact with GPCRs and highlight the presence within GASPs of a novel protein-protein interaction motif that might represent a new target to investigate the involvement of GASPs in the modulation of the activity of GPCRs.


Assuntos
Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Receptores Acoplados a Proteínas G/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Linhagem Celular , Humanos , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Receptores Acoplados a Proteínas G/química , Proteínas de Transporte Vesicular/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...